【直线l1y等于x加1】如图,直线L1:y=x+1与直线L2:y=mx+n相交于点P(1,b)(1)..._数学_西川宏
编辑: admin 2017-15-06
-
4
(1)把点P(1,b)代入直线L1:y=x+1 得:b=1+1=2
(2)由于直线L1:y=x+1与直线L2:y=mx+n相交于点P,由其意义可知,方程组的解为:x=1,y=2.
(3)把点P(1,2) 代入直线L2:y=mx+n 得:m+n=2 ,则 假设直线y=nx+m (ps:估计楼主写错了)经过点p,则有,把点P(1,2)代入得:m+n=2 符合 ,则直线y=nx+m 经过点P.
其他同学给出的参考思路:
vb
互助这道作业题的同学还参与了下面的作业题
题1: 如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为______.[数学科目]
把y=2代入y=x+1,得x=1,
∴点P的坐标为(1,2),
根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值.
因而不等式x+1≥mx+n的解集是:x≥1.
故答案为:x≥1.
题2: 【如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为______.】[数学科目]
把y=2代入y=x+1,得x=1,
∴点P的坐标为(1,2),
根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值.
因而不等式x+1≥mx+n的解集是:x≥1.
故答案为:x≥1.
题3: 如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为数学科目]
直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),
∴2=a+1,a=1.
∴2=m+n,n=2-m
则关于x的不等式x+1≥mx+n,
即x+1>=mx+2-m,
亦即(1-m)x>=1-m,①
m=1时l1与l2重合,舍去;
m>1时①的解集为x>=1;
m
题4: 如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为______.[数学科目]
把y=2代入y=x+1,得x=1,
∴点P的坐标为(1,2),
根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值.
因而不等式x+1≥mx+n的解集是:x≥1.
故答案为:x≥1.
题5: 如图,直线l1:y=kx+b平行于直线y=x-1,且与直线l2:y=mx+12相交于点P(-1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直[数学科目]
(1)∵y=kx+b平行于直线y=x-1,
∴y=x+b
∵过P(-1,0),
∴-1+b=0,
∴b=1
∴直线l1的解析式为y=x+1;(1分)
∵点P(-1,0)在直线l2上,
∴?m+12=0
∴m=12;
∴直线l2的解析式为y=12x+12;(2分)
(2)①A点坐标为(0,1),
则B1点的纵坐标为1,设B1(x1,1),
∴12
x
1+12=1;∴x1=1;
∴B1点的坐标为(1,1);(3分)
则A1点的横坐标为1,设A1(1,y1)
∴y1=1+1=2;
∴A1点的坐标为(1,2),即(21-1,21);(4分)
同理,可得B2(3,2),A2(3,4),即(22-1,22);(6分)
②经过归纳得An(2n-1,2n),Bn(2n-1,2n-1);(7分)
当动点C到达An处时,运动的总路径的长为An点的横纵坐标之和再减去1,
即2n-1+2n-1=2n+1-2.(8分)