【如何写数学作文】数学作文怎么写?_数学_qhhbgc148
编辑: admin 2017-15-06
-
4
我的发现
同学们,在你们的数学学习中是否和我一样,有一些不经意的发现?现在我就来介绍我的几个发现.
如果要你算一个多位数乘5,你是不是准备列竖式?我却可以口算,因为我发现一个小诀窍.想知道吗?让我来告诉你:算48532×5的积,先找到这个数485320,再把它除以2,你会口算吗?242660这就是48532×5的积了.知道为什么吗?我把原来的数先扩大10倍,再缩小2倍,是不是相当于扩大5倍呀?你掌握这个小窍门了吗?
同样的发现我还有:一个数乘1.5只要用它本身加上它的一半就可以了.(想想为什么?)一个数乘15呢?用刚才的方法再加一步——你已经想到了吧,再扩大10倍就好了!
我还发现一个多位数,末两位符合这个要求:十位上十奇数,个位上是5,用它乘5,积的末两位肯定是75.我想这是为什么呢?因为多位数的个位与5相乘得25,积的个位是5,向十位进2,而十位的奇数与5相乘的到的是几十五,这个5应该和个位进上来的5相加写在十位上,所以这个积的十位上肯定是7,个位上肯定是5.同样的道理,你不难推出,一个多位数十位上是偶数,个位上是5,它与5相乘,积的末两位肯定是25.
这个发现能用我前面所说的一个数乘5的巧妙算法来解释吗?想想看,它们是一致的,因为这个数扩大10倍后,末两位是50,再除以2,可能百位上有余数1,与50合起来150÷2=75是末两位上的数字,也可能百位上没有余1,那么50÷2的商就是末两位上的数字.
同学们,我的这个小发现是不是很微不足道?但我很自豪,这是我自己动脑筋观察和思考的结果.伟大的发现不是由这点点滴滴组成的吗?同学们,让我们一起做一个勤于思考、善于发现的人吧!
谈谈对零的认识
零看上去很单调,就是没有,其实它非常地丰富,它隐藏了许多.在数学中零非常特殊,不管做什么题,你应该考虑零.
在几何中,“0”经常被作为记号.
“0”的特殊源于在一些概念或题里,比如每个有理数都有倒数,“0”却没有,有理数分为正数、负数.“0”,一个数就分为一类,这不特殊吗?在除数里,只有零不能作除数.零作被除数,不管除以什么数(“0”除外)都得零.
往往我们会忽视零,但它却起着重要的责任.如,问等于几?有些人就不能联想到“0”.在数数时,有人就会忘掉零.如:不大于5不小于-5的整数有几个?有人就会定有8个.其实还有0.如:有哪些数的绝对值不大于本身?那就是正数和零(也可以称之为非负数).
零在生活中更量五彩斑斓.在期末后开家长会,老师那里登记的犯错本给家长看时,我们都希望自己的那一格记着“0”,这表示我们没有犯过错,家长高兴,我们高兴.但是在卷子上我们都不希望看到这个数或接近这个数的整正数,否则回家的日子就难过了.在比赛中,谁都不希望得到“0”.
零是丰富的.我认为零在题中是陷井,大家以后做题时应考虑零.零在不同的场合也能使人的情绪改变.它是美妙而又丰富的.
对0的认识
0是一个奇妙的数字,又是一个中学生经常遇见的“老朋友”了,计算,概念,都要遇见.
首先,0表示什么也没有,简直可称得上是数字里面的“沙漠”,0也是一个奇怪的数字,放在体积、面积、重量、速度、路程等所有单位里面,都表示没有,以表示时间、一个人的年龄、赛跑的刚开始、起点.
在数学王国数字库自然数里面,以有0的身影,它当然是最小的.没有0,便没有一毓的自然数,因为0是自然数的起点.
在计算里,0乘以任何一个数,包括负数、分数、0都,0的绝对值也等于0,在有理数中,它的绝对值是最小的,0除以任何一个数都,0加上一个数,仍得那个数,如:0+1=1,0+1.8375=1.8375.0减去一个数,得那个数的相反数,如:0-1=-1,0-87=-87.
在数轴中,0为原点,也为边界线,把正负两大数分开,0为什么奇妙呢?因为0既不是正数,也不是负数,它只是一个整数,当0和正数在一起时,叫非负数,和负数在一起时,叫非正数,数轴上,0又为我们判断正负数大小时提供了极大的方便,右边为正数,左边为负数,右边的数始终比左边大,说明正数大于负数,0大于负数,却小于正数.
在几何中,0度角表示一条射线,它并没有角,也没有度数,0平方米,表示没有面积,0米长,表示没有高度.0斤重,表示没有质量,0立方米,表示没有体积.
在地形中,0表示海平面,0以上表示高出海平面,0以下表示低于海平面,中国新疆有一155米的盆地,它是低于海平面155米,中国西藏有8848米的珠峰,它高于海平面8848米.
今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米.此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了.
首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水.随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米.用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米.当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!
接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是13.96立方米和11169000立方米.结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气
百度知道打“ 数学 作文 ”……我不太清楚你是要什么类的
能帮助到你我很高兴
互助这道作业题的同学还参与了下面的作业题
题1: 有关数学作文怎么写?拜托了![语文科目]
出现一些数学代名词,把你对它们的见解写进去,好处、坏处、用处作用、带来了方便什么的都可以写
题2: 数学小论文怎么写呢?[数学科目]
老师一定给你主题了吧?现根据老师给你的主题去选定一个你喜欢的方向,其实挺简单的,老师不会仔细看,毕竟是数学老师嘛:)我原来也写过~她就是想让你把你对于问题的理解写上去,你可以画图之类的,加油~
题3: 数学论文怎么写呢?数学论文有没有格式啊?我要咋写呢?不要范文,给点建议就好了!只是格式没有字体要求的!我们是手写的拉![语文科目]
要看你写论文的目的啊.如果是像一般本科毕业论文之类的.也要看你自己的要求.如果是想得优秀.那应该要有自己新的出彩的东西.如果只是为了拿良好或者及格.那没关系.基本上随便写写.或者到以前现成的文献上各处搬点过来也可以了.
如果是要发表啥的.那总要有点出彩的地方才行把
这里可以给你看下我本科学校(温州大学)数学学院论文要求
毕业论文的注意事项
(2008年11月20日)
一、毕业论文的意义
1、经受科学研究的初步训练,掌握科学研究的基本方法.
2、检验学生学习质量的重要手段.
3、本科学生毕业并获得学士学位的必要条件.
二、毕业论文的基本要求
1、论文任务书(由指导教师填写)
教师负责向学生讲解任务书中所规定的论文具体要求和目标,学生必须按任务书的要求进行论文的撰写.
2、开题报告(不少于2000字,由学生撰写)
选题的背景和意义,研究的基本内容和拟解决的主要问题,研究的方法及措施,研究工作的步骤与进度,主要参考文献等.通过上述描述可以让指导师作出判断:问题研究的价值和研究方法的可行性、题目的大小是否合适、参考资料是否充足等.
开题报告必须经指导教师签署意见及学院审定后才能生效.
3、文献综述(不少于2000字,由学生撰写)
由学生通过系统地查阅与所选课题相关的国内外文献,进行搜集、整理、加工,从而撰写的综合性叙述和评价文章.要全面地反映与本课题直接相关的国内外研究成果和发展趋势,指出该课题所需要进一步解决的问题.
文献综述的特点是综合性、描述性、评价性.它能反映学生的文献阅读能力和综合分析能力.
文献包括社会调查与科学实验材料、平时的学习记录或读书笔记、公开发表的论文或出版的著作(主流文献).
文献中要求至少有两篇外文文献.
4、文献翻译
翻译的英文文献要求达到10000个字符以上(或翻译成中文后至少在2000汉字以上),翻译的文献应该与所研究的课题有关.
注意:文献翻译的题目应该是被翻译文献或资料的题目,而不是论文的题目.
5、论文及其格式
整体结构
封面
目录
标题(2号黑体)
(空两行)
姓名(4号宋体)
(班级)(5号宋体)
(空一行)
摘要:(小5号宋体加黑)摘要内容(小5号宋体)
关键词:(小5号宋体加黑)词语(小5号宋体)
(空一行)
正文(宋体小四号字(英文用新罗马体12),单倍行距,页码用小五号字,文中的一些段落标题,可以用4号宋体或者加黑)
(空一行)
参考文献(5号宋体加黑)
文献标题等(5号宋体)
(空一行)
英文摘要(New Roman 10号,内容与中文摘要相同)
范文1,范文2,范文3
论文摘要:以浓缩形式概括所研究课题的内容,要突出本课题的成果和新见解.一般不超过300字.
关键字:正文主题内容信息的单词、词组或术语.一般为3--5个.
正文:论文的核心部分(不少于8000汉字).包括引言、对课题内容和成果的详细表述、深入的分析和周密的论证、结束语、致谢等.可分成若干段落或章节,对各章节或段落要标以小标题或序号.
参考文献:罗列正文中所援引的文献,大多按引用的顺序排列.文献的篇数一般不少于10篇,其中至少有两篇外文文献.
期刊:[序号]作者,题名[J],期刊名称,出版年月,期号
书籍:[序号]著者,书名[M],版次,出版社,出版年月,起止页码
论文集: [序号]作者,题名[C].见:编者,文集名,出版者,出版年月,起止页码.
三、论文工作程序
1、选题(11月20日至12月15日),分三轮进行.选题网址:
http://www.wzumath.com/lw
经过三轮师生双向选题确定论题和指导师:
11月21日至11月30日第一轮选题
12月1日至12月10日第二轮选题
12月11日至12月15日第三轮选题
在每轮选题期间,每位学生至多预选两个论题,并且要及时与相关指导老师联系并商定,防止选题无效.确定题目和指导师后请及时告知学院办公室(龚老师),以免影响其他同学选题.
学生也可自选论题,但应及时与相关教师商讨确定.
三论选题后仍没有确定题目的同学将由学院指定.
12月16至12月20日由学院调整汇总并最后确定,论文研讨方向和指导师确定后,不得随意更改和变动.
2、任务书和开题报告
08年12月下旬由指导教师向学生下达论文任务书,学生接到任务书后,开始搜集查阅文献资料,并在教师的指导下开始撰写开题报告.
09年3月10日前完成开题报告以班级为单位上交学院教学办公室.
3、文献综述和文献翻译
09年3月31日前完成文献综述和文献翻译以班级为单位上交到学院教学办公室.
4、论文初稿
09年4月30日前写出论文初稿,并交给指导教师,经指导师修改后返回给学生.在此前后应随时与指导师保持联系,当面听取指导师的意见,对论文进行2到3次修改.
5、论文正稿
09年5月22日前完成论文正稿,用A4纸打印,加封面和目录装订成册,一式三份(一份自留,一份交指导师,一份以班级为单位上交到学院教学办公室)
6、纪律约束
在整个论文工作期间,学生与指导师必须保持密切联系,至少有6次接受指导师的面授指导.
若学生没有按期完成某个阶段的工作,则必须提交书面理由,指导师给出初步意见,由学位委员会决定是否影响其毕业论文的成绩.
填写工作记录卡
7、答辩
09年5月30日进行论文答辩,所有学生和指导师都要参加.
题4: 【怎么写数学论文,急用!】[语文科目]
如何学写数学小论文 “ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题.一篇好论文的产生,对于它的作者来说是一次创造性的劳动.创造性的劳动对劳动者的要求是很高的.其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考.从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文.综观获奖论文的小作者们,他们大多是数学学习的有心人.好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养.(1) 写什么 写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手.下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析.论文按内容分类,大概有以下几种:①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如:一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如:分式“家族”中的亲缘探究
题5: 【要简单明了的,我不是要作弊啊1我是压根不知道怎么动笔呢!】
作弊不好,自己写
数学发展史
此书记录了世界初等数学的发展与变迁.可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年.可让读者了解数学的光辉历史与发展.是将历史与数学结合出的趣味百科读物.
数的出现
一、数的概念出现
人对于“数”的概念是与身俱来的.从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识.而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数.通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法.这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步.从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚.这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步.
数字与符号的起源与发展
一、数的出现
很快,人类就又迈出了一大步.随着文字的出现,最原始的数字就出现了.且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”.在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字.它们告诉了我们:简洁的,就是最好的.
而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦.其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制.可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码.于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器.但不可否认的是,它又创造了一种新的数码表示方法.
二、符号的出现
加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们.别看它们这么简
单,直到17世纪中叶才全部形成.
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法.这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足.
1、加号(+)和减号(-)
加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始.到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法.1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用.
2、乘号(×、·)
乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘.英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法.据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的.另一乘号“·”是数学家赫锐奥特首创的.后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认.
3、除号(÷)
除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中正式把“÷”作为除号.符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广.除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”.
至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度.
4、等号(=)
等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用.1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受.
分数
一、分数的产生与定义
人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数.
一个物体,一个图形,一个计量单位,都可看作单位“1”.把单位“1”平均分成几份,表示这样一份或几份的数叫做分数.在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位.
分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.
分数一般包括:真分数,假分数,带分数.
真分数小于1.
假分数大于1,或者等于1.
带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的.
注意 :
①分母和分子中不能有0,否则无意义.
②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数.
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数.(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
二、分数的历史与演变
分数在我们中国很早就有了,最初分数的表现形式跟现在不一样.后来,印度出现了和我国相似的分数表示法.再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了.
在历史上,分数几乎与自然数一样古老.早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数.
在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度.早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数.
公元前1850年左右的埃及算学文献中,也开始使用分数.
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数.
为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的.
最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一.秦始皇时代的历法规定:一年的天数为三百六十五又四分之一.这说明:分数在我国很早就出现了,并且用于社会生产和生活.
《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法.
在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 .
几何
一、公式
1、平面图形
正方形: S=a² C=4a
三角形: S=ah/2 a=2S/h h=2S/a
平行四边形:S=ah a=S/h h=S/a
梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a
圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏
半圆: S=∏r²/2 C=∏r+d=5.14r
顶点数+面数-块数=1
2、立体图形
正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a
长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)
圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r²
其它柱体:V=S底h
锥体: V=V柱体/3
球: V=4/3∏r³ S表=4∏r²
顶点数+面数-棱数=2
数论
一、数论概述
人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0.它们合起来叫做整数.(现在,自然数的概念有了改变,包括正整数和0)
对于整数可以施行加、减、乘、除四种运算,叫做四则运算.其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行.也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数.但整数之间的除法在整数范围内并不一定能够无阻碍地进行.
人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性.比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等.利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索.
数论这门学科最初是从研究整数开始的,所以叫做整数论.后来整数论又进一步发展,就叫做数论了.确切的说,数论就是一门研究整数性质的学科.
二、数论的发展简况
自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科.
自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等.在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了.后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善.
在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质.因此关于质数性质的有关问题,一直受到数学家的关注.
到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了.德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作.这部书开始了现代数论的新纪元.
在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法.
由于近代计算机科学和应用数学的发展,数论得到了广泛的应用.比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等.此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用.特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能.
三、数论的分类
初等数论
意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余.重要的结论包括中国剩余定理、费马小定理、二次互逆律等等.
解析数论
借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类.积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果.加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题.此外例如筛法、圆法等等都是属于这个范畴的重要议题.我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法.
代数数论
是把整数的概念推广到代数整数的一个分支.关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密.建立了素整数、可除性等概念.
几何数论
是由德国数学家、物理学家闵可夫斯基等人开创和奠基的.主要在于透过几何观点研究整数(在此即格子点)的分布情形.几何数论研究的基本对象是“空间格网”.在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网.空间格网对几何学和结晶学有着重大的意义.最著名的定理为Minkowski 定理.由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究.
计算数论
借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题.
超越数论
研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣.
组合数论
利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论.这是由艾狄胥开创的思路.
四、皇冠上的明珠
数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”.因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”.
简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题……
五、中国人的成绩
在我国近代,数论也是发展最早的数学分支之一.从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家.其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的.1949年以后,数论的研究的得到了更大的发展.特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩. 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点.至今,这仍是“歌德巴赫猜想”的最好结果.
名著录
《几何原本》 欧几里得 约公元前300年
《周髀算经》 作者不详 时间早于公元前一世纪
《九章算术》 作者不详 约公元一世纪
《孙子算经》 作者不详 南北朝时期
《几何学》 笛卡儿 1637年
《自然哲学之数学原理》 牛顿 1687年
《无穷分析引论》 欧拉 1748年
《微分学》 欧拉 1755年
《积分学》(共三卷) 欧拉 1768-1770年
《算术探究》 高斯 1801年
《堆垒素数论》 华罗庚 1940年左右
任意选一段吧!