等差数列{an}的前n项和为Sn,若Sn=30,S2
编辑: admin 2017-12-03
-
4
因为数列{an}为等差数列,
所以由等差数列性质可得:sn,s2n-sn,s3n-s2n…为等差数列.
即30,100-30,S3n-100是等差数列,
∴2×70=30+S3n-100,解得S3n=210,
故选C.
提示:
210
类似问题
类似问题1:已知{an}是等差数列,前n项和记为Sn,已知数列Sm,求证:Sm,S2m-Sm,S3m-S2m也成等差数列[数学科目]
S2m-Sm
=(a1+a2+……+a2m)-(a1+a2+……+am)
=a(m+1)+a(m+2)+……+a2m
同理
S3m-S2m
=a(2m+1)+a(2m+2)+……+a3m
所以(S2m-Sm)-Sm
=[a(m+1)+a(m+2)+……+a2m]-(a1+a2+……+am)
=[a(m+1)-a1]+[a(m+2)-a2]+……+(a2m-am)
=md+md+……+md
=m²d
(S3m-S2m)-(S2m-Sm)
=[a(2m+1)+a(2m+2)+……+a3m]-[a(m+1)+a(m+2)+……+a2m]
=[a(2m+1)-a(m+1)]+[a(2m+2)-a(m+2)]+……+(a3m-a2m)
=md+md+……+md
=m²d
所以(S2m-Sm)-Sm=(S3m-S2m)-(S2m-Sm)
所以Sm,S2m-Sm,S3m-S2m成等差数列
类似问题2:等差数列an前n项和为Sn=m,Sm=n,求Sm+n的值[数学科目]
设公差为d.
Sm=ma1+(m^2-m)d/2=n,则mna1+(m^2n-mn)d/2=n^2 (1)
Sn=na1+(n^2-n)d/2=m,则mna1+(mn^2-mn)d/2=m^2 (2)
(1)-(2)得:(d/2)(m^2n-mn^2)=n^2-m^2、(d/2)mn(m-n)=-(m+n)(m-n)
因为mn,所以(d/2)mn=-(m+n)、mnd=-2m-2n (*)
S(m+n)=a1+a2+…+am+a(m+1)+a(m+2)+…+a(m+n)
=Sm+[a1+md]+[a1+(m+1)d]+…+[a1+(m+n-1)d]
=n+{a1+(a1+d)+…+[a1+(n-1)d]}+mnd
=n+[a1+a2+…+an]+mnd
=n+Sn+mnd
=m+n+mnd
将(*)式代入可得:S(m+n)=-m-n
类似问题3:在等差数列{an}中Sn=m,Sm=n,求Sn+m?[数学科目]
Sn=(A1+An)n/2=(A1+A1+(n-1)d)n/2=m 2A1+(n-1)d=2m/n
Sm=(A1+Am)m/2=(A1+A1+(m-1)d)m/2=n 2A1+(m-1)d=2n/m
两式相减
(n-m)d=2m/n-2n/m=2(m^2-n^2)/(mn)=2(m+n)(m-n)/(mn)
d=-2(m+n)/(mn) mnd=-2(m+n)
A(n+1)=A1+nd
A(n+2)=A2+nd
……
A(n+m)=Am+nd
上式共m项,相加
A(n+1)+A(n+2)+……+A(n+m)=(A1+A2+……+Am)+mnd=Sm-2(m+n)
S(n+m)=Sn+(A(n+1)+A(n+2)+……+A(n+m))
=Sn+Sm-2(m+n)
=n+m-2(n+m)
=-(n+m)
类似问题4:在等差数列{an}中,Sm=Sn,则Sm+n的值为没其他条件[数学科目]
Sm=Sn(m≠n)
ma1+m(m-1)d/2=na1+n(n-1)d/2
ma1-na1=d/2*[n(n-1)-m(m-1)]=d/2*[(n-m)(n+m-1)]
(m-n)a1=d/2*[(n-m)(n+m-1)]
a1=-d/2*(n+m-1)
S(m+n)=(m+n)a1+(m+n)(m+n-1)d/2
=(m+n)[a1-d/2*(m+n-1)]
=0
类似问题5:设{an}是等差数列,它的前n项之和 Sn=m,前m项之和 Sm=n,求{an}的前m+n项之和 Sm+n[数学科目]
Sm=a1m+m(m-1)d/2=n (1) Sn=a1n+n(n-1)d/2=m (2) (1)-(2) a1(m-n)+(m+n-1)(m-n)d/2=n-m a1+(m+n-1)d/2=-1 a1=-1-(m+n-1)d/2 Sm+n=a1(m+n)+(m+n)(m+n-1)d/2 =[-1-(m+n-1)d/2](m+n)+(m+n)(m+n-1)d/2 =-(m+n)