2012年河北数学中考倒数第二题如图,A(-5,0)
编辑: admin 2017-09-03
-
4
(1)∵∠BCO=∠CBO=45°,
∴OC=OB=3,
又∵点C在y轴的正半轴上,
∴点C的坐标为(0,3);
(2)分两种情况考虑:
①当点P在点B右侧时,
若∠BCP=15°,得∠PCO=30°,
故PO=CO•tan30°=根号 3 ,此时t=4+根号3 ;
②当点P在点B左侧时
由∠BCP=15°,得∠PCO=60°,
故OP=COtan60°=3根号3
t=3+3根号3
综上,……
(3)由题意知,若⊙P与四边形ABCD的边相切时,有以下三种情况:
①当⊙P与BC相切于点C时,有∠BCP=90°,
从而∠OCP=45°,得到OP=3,此时t=1;
②当⊙P与CD相切于点C时,有PC⊥CD,即点P与点O重合,此时t=4;
③当⊙P与AD相切时,由题意,得∠DAO=90°,
∴点A为切点,如图4,PC2=PA2=(9-t)2,PO2=(t-4)2,
于是(9-t)2=(t-4)2+32,即81-18t+t2=t2-8t+16+9,
解得:t=5.6,
∴t的值为1或4或5.6.
类似问题
类似问题1:2012年沈阳市数学中考题24题第(3)问中的②问[数学科目]
是这题吗?
24.已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB= ,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.
(1)求AP的长;
(2)求证:点P在∠MON的平分线上;
(3) 如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长的值;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.
24. (1) 过点P作PQ⊥AB于点Q ∵PA=PB, ∠APB=120° AB=4
(3) ①8+4根号3 ②4+4根号3 <t≤8+4根号3