全等三角形的定义、性质、判定-全等三角形-数学学习资
编辑: admin 2017-09-03
-
4
能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”.当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.由此,可以得出:全等三角形的对应边相等,对应角相等.
定理:
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了
三角形具有稳定性的原因.
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”).
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”).
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理.
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状.
三角形全等的性质:
1.全等三角形的对应角相等.
2.全等三角形的对应边相等.
3.全等三角形的对应边上的高对应相等.
4.全等三角形的对应角的角平分线相等.
5.全等三角形的对应边上的中线相等.
6.全等三角形面积相等.
7.全等三角形周长相等.
8.全等三角形的对应角的三角函数值相等.
类似问题
类似问题1:判定全等三角形的五种定义,要带图其实书上的概念我都知道啦![数学科目]
(1)三边对应相等的两个三角形全等(SSS)
(2)两边和它们的夹角对应相等的两个三角形全等(SAS)
(3)两个角和他们夹边对应相等的两个三角形全等(ASA)
(4)两个角和其中一个角的对边对应相等的两个三角形全等(AAS)
(5)斜边和一条直角边对应相等的两个直角三角形全等(HL)
不知道怎么放图进来啊!
要的话,把你的邮箱留下,我发过去!
类似问题2:什么叫全等三角形,全等三角形的性质与判定(具体内容)[数学科目]
定义
能够完全重合(大小,形状都相等的三角形)的两个三角形称为全等三角形.
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.
(3)有公共边的,公共边一定是对应边.
(4)有公共角的,角一定是对应角.
(5)有对顶角的,对顶角一定是对应角.
判定定理
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因.
2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”).
3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”).
4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理.
注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,因为勾股定理,只要确定了斜边和一条直角边,另一直角边也确定,属于SSS),这两种情况都不能唯一确定三角形的形状.
A是英文角的缩写(angle),S是英文边的缩写(side).
H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg).
6.三条中线(或高、角平分线)分别对应相等的两个三角形全等.
性质
三角形全等的性质:
1.全等三角形的对应角相等.
2.全等三角形的对应边相等
3.全等三角形的对应顶点位置相等.
4.全等三角形的对应边上的高对应相等.
5.全等三角形的对应角的角平分线相等.
6.全等三角形的对应边上的中线相等.
7.全等三角形面积相等.
8.全等三角形周长相等.
9.全等三角形可以完全重合.
类似问题3:全等三角形的概念、性质和定义.[数学科目]
1 定义:能够完全重合的两个三角形称为全等三角形.2三角形全等的性质:1.全等三角形的对应角相等.2.全等三角形的对应边相等.3.全等三角形的对应边上的高对应相等.4.全等三角形的对应角的角平分线相等.5.全等三角形的对应边上的中线相等.6.全等三角形面积相等.7.全等三角形周长相等.
类似问题4:角的平分线的性质 全等三角形判定角的平分线的性质1 其理论依据是全等三角形判定定理 (0ABCD选项 SAS HL AAS ASA PS:- -这些都是个啥.我完全看不懂- -你们耶看不懂呀,我新转学的,搞不懂试[数学科目]
意思了有人已经给你说了的,以后上课了还是要对自己负责些的了.
类似问题5:全等三角形概念及性质[数学科目]
概念:能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”.当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.由此,可以得出:全等三角形的对应边相等,对应角相等.
三角形全等的性质:
1.全等三角形的对应角相等.
2.全等三角形的对应边相等.
3.全等三角形的对应边上的高对应相等.
4.全等三角形的对应角的角平分线相等.
5.全等三角形的对应边上的中线相等.
6.全等三角形面积相等.
7.全等三角形周长相等.
8.全等三角形的对应角的三角函数值相等.