1乘2分之1加2乘3分之1加3乘4分之1加.加49乘
编辑: admin 2017-03-03
-
4
1乘2分之1加2乘3分之1加3乘4分之1加.加49乘50分之1
=1-1/2+1/2-1/3+……+1/49-1/50
=1-1/50
=49/50
答案是50分之49
提示:
题目应该是:1乘2分之1加2乘3分之1加3乘4分之1加。。。。。。加49乘50分之1
=1x1/2+2x1/3+3x1/4+……+49x1/50
=1-1/2+1/2-1/3+……+1/49-1/50
=1-1/50
=49/50
答案是50分之49
类似问题
类似问题1:1乘2分之5加2乘3分之5加3乘4分之5加.加48乘49分之5加49乘50分之5等于( )[数学科目]
5/1×2+5/2×3+5/3×4+……+5/48×49+5/49×50
=5(1/1×2+1/2×3+1/3×4+……+1/48×49+1/49×50)
=5(1/1-1/2+1/2-1/3+1/3-1/4+……+1/48-1/49+1/49-1/50)
=5(1-1/50)
=5×49/50
=49/10
类似问题2:1乘2分之1加2乘3分之1加3乘4分之1加.加49乘50分之一[数学科目]
1/2+1/6+1/12.+1/(49*50)=1-1/2+1/2-1/3+1/3-1/4+.-1/49+1/49-1/50
=1-1/50=49/50
类似问题3:1乘2 分之1加2乘3 分之1加...加49乘50 分之1加50乘51 分之1=?多谢各位大哥大嫂大叔大婶大爷大妈了![数学科目]
=50-(1/2+1/3+.1/50)
=51-(1+1/2+1/3+.1/50)
会了不,希望一点就通哈因为
Euler(欧拉)在1734年,利用Newton的成果,首先获得了调和级数有限多项和的值.结果是:
1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量)
Euler近似地计算了r的值,约为0.577218.叫着欧拉常数.
也就是原题=51-ln(50+1)+0.577218
不知道你学过欧拉定律没?恩你没说你几年级哈
1665年牛顿在他的著名著作《流数法》中推导出第一个幂级数:
ln(1+x) = x - x2/2 + x3/3 - ...
Euler(欧拉)在1734年,利用Newton的成果,首先获得了调和级数有限多项和的值.结果是:
1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量)
他的证明是这样的:
根据Newton的幂级数有:
ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...
于是:
1/x = ln((x+1)/x) + 1/2x^2 - 1/3x^3 + ...
代入x=1,2,...,n,就给出:
1/1 = ln(2) + 1/2 - 1/3 + 1/4 -1/5 + ...
1/2 = ln(3/2) + 1/2*4 - 1/3*8 + 1/4*16 - ...
.
1/n = ln((n+1)/n) + 1/2n^2 - 1/3n^3 + ...
相加,就得到:
1+1/2+1/3+1/4+...1/n = ln(n+1) + 1/2*(1+1/4+1/9+...+1/n^2) - 1/3*(1+1/8+1/27+...+1/n^3) + .
后面那一串和都是收敛的,我们可以定义
1+1/2+1/3+1/4+...1/n = ln(n+1) + r
Euler近似地计算了r的值,约为0.577218.这个数字就是后来称作的欧拉常数.不过遗憾的是,我们对这个常量还知之甚少,连这个数是有理数还是无理数都还是个谜.
类似问题4:1乘二分之一加2乘三分之一加3乘四分之一一直加到49乘50分之一等于多少?[数学科目]
-1乘二分之一加2乘三分之一加3乘四分之一一直加到49乘50分之一/
=1-1/2+1/2-1/3+1/3-1/4+……+1/50
=1-1/50
=49/50
类似问题5:(50分之1-1)乘(49分之1-1)…乘(2分之1-1)等于多少,要有过程[数学科目]
(50分之一-1)乘(49分之1-1).(3分之1-1)乘(2分之1-1)=?
=(-49/50)(-48/49)(-47/48)*.(-2/3)(-1/2)
共49个负号 消去后
=-1/50