因式分解的万能公式是什么?记得有个公式每个要分解的.
编辑: admin 2017-27-02
-
4
你所说的万能公式,只是针对一元二次因式的分解.ax^2 + b x +c =0 先凑完全平方,再用平方差公式.x^2 +bx/a +c/a =0 x^2 +bx/a +b^2/4a^2 - b^2/4a^2 + c/a = 0 (x - b/2a)^2 - (b^2-4ac)/4a^2=0 [ x - b/2a +根号 (b^2-4ac)/2a]*[x-b/2a-根号(b^2-4ac)/2a]=0 或许你想要的万能公式就是上面这个吧.
提示:
你自己创的吗?我怎么没听说过 我只知道一元二次方程的求根公式x=[-b±√(b^2-4ac)]/(2a)
类似问题
类似问题1:因式分解的万能公式是什么?记得有个公式每个要分解的往里一套都行求这个[数学科目]
不存在 也不可能存在
类似问题2:因式分解公式和解析[数学科目]
因式分解的十二种方法 :
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.
例2、分解因式a +4ab+4b (2003南通市中考题)
a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析:1 -3
7 2
2-21=-19
7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解.
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.
例7、分解因式2x -x -6x -x+2
2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ ,x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
令f(x)=2x +7x -2x -13x+6=0
通过综合除法可知,f(x)=0根为 ,-3,-2,1
则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
令y= x +2x -5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.
例11、分解因式x +9x +23x+15
令x=2,则x +9x +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.
例12、分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.
设x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
类似问题3:因式分解的公式是什么如x^3-2x^2+x怎么分解,还有其他的越详细越好最好有例题[数学科目]
x³-2x²+x
原式=x(x²-2x+1)
=x(x-1)²
(1-a²)(1-b²)-4ab
原式=1-a²-b²+a²b²-4ab
=(1-ab)²-(a+b)²
=(1-ab+a+b)(1-ab-a-b)
(x²+5x+9)(x²-3x+7)-3(4x+1)²
设t=[(x²+5x+9)+(x²-3x+7)]/2=x²+x+8
则原式=[t+(4x+1)][t-(4x+1)]-3(4x+1)²
=t²-(4x+1)²-3(4x+1)²
=t²-4(4x²+1)²
=t²-[2(4x+1)]²
=t²-(8x+2)²
=(t+8x+2)(t-8x-2)
=(x²+9x+10)(x²-7x+6)
=(x²+9x+10)(x-1)(x-6)
2α+3α²+2α³-32
原式=2α³+3α²-14α+16α-32
=α(2α²+3α-14) +16(α-2)
=α(α-2)(2α+7)+16(α-2)
=(α-2)(2α²+7α+16)
2acx+4bcx+adx+2bdx+4acy+8bcy+2abdy+4bdy
原式=(2acx+4bcx+adx+2bdx)+(4acy+8bcy+2ady+4+bdy)
=x(2ac+4bc+ad+2bd)+2y(2ac+4bc+ad+2bd)
=(2ac+4bc+ad+2bd)(x+2y)
=[2c(a+2b)+d(a+2b)](x+2y)
=(a+2b)(2c+d)(x+2y)
类似问题4:因式分解!这用的是什么公式?
类似问题5:因式分解公式要七年级的公式,最好用语言[数学科目]
平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)
十字相乘法初步公式:x^2+(p+q)x+pq=(x+p)(x+q) .
十字相乘法通用公式:如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).
掌握以上公式,应付初中阶段的考试足够了